Catalogue of metrics
Gradus.jl implements a library of metrics ready to use for integrations and rendering.
Gradus.AbstractMetricGradus.DilatonAxionGradus.JohannsenMetricGradus.JohannsenPsaltisMetricGradus.KerrDarkMatterGradus.KerrMetricGradus.KerrNewmanMetricGradus.KerrRefractiveGradus.KerrSpacetimeFirstOrderGradus.MorrisThorneWormholeGradus.NoZMetric
To implement your own custom metrics, please see Implementing a new metric. If you have a complex metric, please open an issue requesting for it to be added.
Currently available metrics
Gradus.AbstractMetric — Typeabstract type AbstractMetric{T} endAbstract type used to dispatch different geodesic problems.
Gradus.DilatonAxion — Typestruct DilatonAxion{T} <: AbstractStaticAxisSymmetric{T}Einstein-Maxwell-Dilaton-Axion metric.
M = 1.0: Singularity mass.a = 0.0: Singularity spin.β = 0.0: Dilaton coupling strength.b = 1.0: Axion coupling strength.
Gradus.JohannsenMetric — Typestruct JohannsenMetric{T} <: AbstractStaticAxisSymmetric{T}The Johannsen (20xx) metric.
M = 1.0: Black hole mass.a = 0.0: Black hole spin.α13 = 0.0: $\alpha_{13}$ deviation parameter.α22 = 0.0: $\alpha_{22}$ deviation parameter.α52 = 0.0: $\alpha_{52}$ deviation parameter.ϵ3 = 0.0: $\epsilon_{3}$ deviation parameter.
Gradus.JohannsenPsaltisMetric — Typestruct JohannsenPsaltisMetric{T} <: AbstractStaticAxisSymmetric{T}Johannsen and Psaltis 2011
M = 1.0: Black hole mass.a = 0.0: Black hole spin.ϵ3 = 0.0: $\epsilon_{3}$ deviation parameter.
Gradus.KerrDarkMatter — Typestruct KerrDarkMatterhttps://arxiv.org/pdf/2003.06829.pdf
Gradus.KerrMetric — Typestruct KerrMetric{T} <: AbstractStaticAxisSymmetric{T}The Kerr metric in Boyer-Lindquist coordinates, describing a black hole with mass $M$ and angular spin $a$:
\[\begin{align*} \text{d}s^2 = &- \left( 1 - \frac{2 M r}{\Sigma} \right)\text{d}t^2 - \frac{2M r a \sin^2(\theta)}{\Sigma} \text{d}t \text{d}\phi \\ &+ \frac{\Sigma}{\Delta} \text{d}r^2 + \Sigma \text{d}\theta^2 + \left(r^2 + a^2 + \frac{2 M r a^2 \sin^2(\theta)}{\Sigma} \right) \sin^2(\theta) \text{d}\phi^2, \end{align*}\]
where
\[\Sigma = r^2 + a^2 \cos^2 (\theta), \quad \text{and} \quad \Delta = r^2 - 2Mr + a^2.\]
Parameters
M = 1: black hole mass.a = 0: black hole spin.
Gradus.KerrNewmanMetric — Typestruct KerrNewmanMetric{T} <: AbstractStaticAxisSymmetric{T}Gradus.KerrRefractive — Typestruct KerrRefractive{T} <: AbstractStaticAxisSymmetric{T}Kerr metric in Boyer-Lindquist coordintes with a path-length ansatz, equivalent to a refractive index n, within the coronal radius corona_radius.
M = 1.0: Black hole mass.a = 0.0: Black hole spin.n = 1.0: Refractive index within the corona.corona_radius = 20.0: Radius of the corona.
Gradus.KerrSpacetimeFirstOrder — TypeA first-order implementation of KerrMetric.
M = 1.0: Black hole mass.a = 0.0: Black hole spin.E = 1.0: Geodesic energy (a consant of motion).
Gradus.MorrisThorneWormhole — Typestruct MorrisThorneWormhole{T} <: AbstractStaticAxisSymmetric{T}Morris-Thorne wormhole metric.
b = 1.0: Throat size.
Gradus.NoZMetric — Typestruct NoZMetric