Catalogue of metrics
Gradus.jl implements a library of metrics ready to use for integrations and rendering.
Gradus.AbstractMetric
Gradus.DilatonAxion
Gradus.JohannsenMetric
Gradus.JohannsenPsaltisMetric
Gradus.KerrDarkMatter
Gradus.KerrMetric
Gradus.KerrNewmanMetric
Gradus.KerrRefractive
Gradus.KerrSpacetimeFirstOrder
Gradus.MorrisThorneWormhole
Gradus.NoZMetric
To implement your own custom metrics, please see Implementing a new metric. If you have a complex metric, please open an issue requesting for it to be added.
Currently available metrics
Gradus.AbstractMetric
— Typeabstract type AbstractMetric{T} end
Abstract type used to dispatch different geodesic problems.
Gradus.DilatonAxion
— Typestruct DilatonAxion{T} <: AbstractStaticAxisSymmetric{T}
Einstein-Maxwell-Dilaton-Axion metric.
M = 1.0
: Singularity mass.a = 0.0
: Singularity spin.β = 0.0
: Dilaton coupling strength.b = 1.0
: Axion coupling strength.
Gradus.JohannsenMetric
— Typestruct JohannsenMetric{T} <: AbstractStaticAxisSymmetric{T}
The Johannsen (20xx) metric.
M = 1.0
: Black hole mass.a = 0.0
: Black hole spin.α13 = 0.0
: $\alpha_{13}$ deviation parameter.α22 = 0.0
: $\alpha_{22}$ deviation parameter.α52 = 0.0
: $\alpha_{52}$ deviation parameter.ϵ3 = 0.0
: $\epsilon_{3}$ deviation parameter.
Gradus.JohannsenPsaltisMetric
— Typestruct JohannsenPsaltisMetric{T} <: AbstractStaticAxisSymmetric{T}
Johannsen and Psaltis 2011
M = 1.0
: Black hole mass.a = 0.0
: Black hole spin.ϵ3 = 0.0
: $\epsilon_{3}$ deviation parameter.
Gradus.KerrDarkMatter
— Typestruct KerrDarkMatter
https://arxiv.org/pdf/2003.06829.pdf
Gradus.KerrMetric
— Typestruct KerrMetric{T} <: AbstractStaticAxisSymmetric{T}
The Kerr metric in Boyer-Lindquist coordinates, describing a black hole with mass $M$ and angular spin $a$:
\[\begin{align*} \text{d}s^2 = &- \left( 1 - \frac{2 M r}{\Sigma} \right)\text{d}t^2 - \frac{2M r a \sin^2(\theta)}{\Sigma} \text{d}t \text{d}\phi \\ &+ \frac{\Sigma}{\Delta} \text{d}r^2 + \Sigma \text{d}\theta^2 + \left(r^2 + a^2 + \frac{2 M r a^2 \sin^2(\theta)}{\Sigma} \right) \sin^2(\theta) \text{d}\phi^2, \end{align*}\]
where
\[\Sigma = r^2 + a^2 \cos^2 (\theta), \quad \text{and} \quad \Delta = r^2 - 2Mr + a^2.\]
Parameters
M = 1
: black hole mass.a = 0
: black hole spin.
Gradus.KerrNewmanMetric
— Typestruct KerrNewmanMetric{T} <: AbstractStaticAxisSymmetric{T}
Gradus.KerrRefractive
— Typestruct KerrRefractive{T} <: AbstractStaticAxisSymmetric{T}
Kerr metric in Boyer-Lindquist coordintes with a path-length ansatz, equivalent to a refractive index n
, within the coronal radius corona_radius
.
M = 1.0
: Black hole mass.a = 0.0
: Black hole spin.n = 1.0
: Refractive index within the corona.corona_radius = 20.0
: Radius of the corona.
Gradus.KerrSpacetimeFirstOrder
— TypeA first-order implementation of KerrMetric
.
M = 1.0
: Black hole mass.a = 0.0
: Black hole spin.E = 1.0
: Geodesic energy (a consant of motion).
Gradus.MorrisThorneWormhole
— Typestruct MorrisThorneWormhole{T} <: AbstractStaticAxisSymmetric{T}
Morris-Thorne wormhole metric.
b = 1.0
: Throat size.
Gradus.NoZMetric
— Typestruct NoZMetric